Further references#
Here, we provide a collection of relevant links provided by our research group:
The first BigEarthNet (S2) paper Sumbul et al. [6]
The BigEarthNet-MM publication + the recommended 19-class nomenclature Sumbul et al. [7]
The BigEarthNet Guide#
The BigEarthNet Guide documentation introduces the multi-modal BigEarthNet v1.0 dataset and makes it more accessible to others by providing an interactive dataset website.
Pretrained models#
Every repository includes code to re-run the training procedure. These models are all trained with the TensorFlow library.
Pretrained models trained on BigEarthNet-S2 with 43-classes
https://git.tu-berlin.de/rsim/BigEarthNet-S2_43-classes_models
Pretrained models trained on BigEarthNet-S2 with 19-classes
https://git.tu-berlin.de/rsim/BigEarthNet-S2_19-classes_models
Pretrained multi-modal models trained on BigEarthNet-S1 and BigEarthNet-S2 simultaneously
https://git.tu-berlin.de/rsim/BigEarthNet-MM_19-classes_models
Pretrained multi-modal models trained on refined BigEarthNet (ConfigILM was used for the official pretrained checkpoints)
https://huggingface.co/BIFOLD-BigEarthNetv2-0
BigEarthNet Tools#
BigEarthNet-S1 Tools
https://git.tu-berlin.de/rsim/BigEarthNet-S1_tools
Read GeoTIFF patches from BigEarthNet-S1
Script to extract names and download links of the Sentinel-1 Level-1C GRD tiles
Requires the BigEarthNet-S1 dataset on disk
BigEarthNet-S2 Tools
https://git.tu-berlin.de/rsim/BigEarthNet-S2_tools
Read GeoTIFF patches from BigEarthNet-S2
While skipping cloudy/snowy patches
Script to extract names and download links of the Sentinel-2 Level-1C tiles
Requires the BigEarthNet-S2 archive on disk
Code to read pairs of Sentinel-1 and Sentinel-2 patches
https://git.tu-berlin.de/rsim/BigEarthNet-MM_tools
Converter to create a high-throughput format for refined BigEarthNet
https://github.com/kai-tub/rico-hdl
Bibliography#
Kai Norman Clasen, Leonard Hackel, Tom Burgert, Gencer Sumbul, Begüm Demir, and Volker Markl. Reben: refined bigearthnet dataset for remote sensing image analysis. arXiv preprint arXiv:2407.03653, 2024.
Kun Li, George Vosselman, and Michael Ying Yang. Hrvqa: a visual question answering benchmark for high-resolution aerial images. arXiv preprint arXiv:2301.09460, 2023.
Sylvain Lobry, Begüm Demir, and Devis Tuia. Rsvqa meets bigearthnet: a new, large-scale, visual question answering dataset for remote sensing. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 1218–1221. IEEE, 2021.
Sylvain Lobry, Diego Marcos, Jesse Murray, and Devis Tuia. Rsvqa: visual question answering for remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 58(12):8555–8566, 2020.
Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question answering. Advances in neural information processing systems, 2015.
Gencer Sumbul, Marcela Charfuelan, Begüm Demir, and Volker Markl. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, July 2019. URL: https://doi.org/10.1109/igarss.2019.8900532, doi:10.1109/igarss.2019.8900532.
Gencer Sumbul, Arne de Wall, Tristan Kreuziger, Filipe Marcelino, Hugo Costa, Pedro Benevides, Mario Caetano, Begüm Demir, and Volker Markl. BigEarthNet-MM: A large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [Software and data sets]. IEEE Geosci. Remote Sens. Mag., 9(3):174–180, September 2021. URL: https://doi.org/10.1109/mgrs.2021.3089174, doi:10.1109/mgrs.2021.3089174.